
McGraw -Hill/Irwin Copyright © 2005 by The McGraw-Hill Companies, Inc. All rights reserved.

ENTERPRISE INFORMATION SYSTEMS

A PATTERN BASED APPROACH

Chapter 10

View Integration and Implementation

Compromises

10-2

Chapter Learning Objectives

1. Identify the steps needed to integrate multiple business

process level REA models

2. Complete an integration of two or more business process

level REA conceptual models

3. Identify and create common conceptual level, logical level,

and physical level implementation compromises

4. Explain common reasons for compromising implementations

5. Identify information needs that require information from

multiple tables in multiple business processes

6. Create queries to satisfy information needs that require

information from multiple business processes

10-3

View Modeling and View Integration

ÅRecall that one reason we use models in

designing information systems is to reduce

complexity and to simplify the reality into

manageable pieces.

ÅThe separate modeling of each transaction

cycle is called ñview modelingò.

ÅCombining the models together to form a

complete whole is called ñview integrationò.

10-4

View Integration

ÅStep 1: Identify the common entities in two

conceptual level views

ïEach pair of cycles that is connected in the

value chain shares at least one common

resource.

ïMany cycles have at least one agent in

common.

ïCash receipt events and Cash disbursement

events exist in multiple cycles.

10-5

ÅStep 2: Merge the common entities, resolving

entity and attribute conflicts

ïEntity name conflicts

ÅSynonyms: two or more different entity names used to

represent the same entity

ÅHomonyms: one entity name used to represent two or

more different entities

ïAttribute conflicts

ÅDifferent attributes used to describe the same entity in

various views

ÅInclude all attributes needed for all transaction cycles as

attributes for the entity in the integrated model

View Integration

10-6

View Integration

ÅStep 3: Resolve relationship conflicts,

including name conflicts and structural

conflicts

ïEnsure each relationship has a unique name

ïEnsure cardinalities are appropriate for

relationships once common entities are

merged

10-7

Revenue Cycle View

10-8

Acquisition Cycle View

10-9

Identify the common entities

10-10

Merge on Common Entities

10-11

Resolve Relationship

Name Conflicts

10-12

Implementation Compromises

ÅConceptual Level Compromises

ïExclusion of an entity (usually a resource)

because of inadequate measurement tools

ÅE.g. labor and use of fixed assets, supplies, and

services in non-conversion processes

ïExclusion of a relationship because of

inadequate traceability or because no decision

information is needed regarding that

relationship

ÅCaution should be exercised because decision

information may be needed at a later point in time

10-13

Implementation Compromises

ÅConceptual Level Compromises
ïConsolidate conceptually congruent entities

Åe.g. events that always happen simultaneously

10-14

Implementation Compromises

ÅConceptual Level Compromises

ïMaterialization of tasks as entities

ÅE.g. Request for Quote, Receive Bids

ïUse ñwhat is needed to plan, control, execute, and

evaluateò criteria to determine when to separately

model ñsteps needed to achieve an eventò

» If attributes are needed for decision-making

purposes and they canôt be stored within the

existing event entities, often the tasks will need

to be materialized as entities

10-15

Implementation Compromises

ÅLogical Level Compromises

ïLoad considerations discussed in chapter 6

are actually an implementation compromise.

A ñpureò relational database should never

include a null value.

10-16

Implementation Compromises

ÅLogical Level Compromises

ïPosting keys of similar entities in combination to avoid

null values OR Combination of similar entities without a

generalization relationship

ÅE.g. creating a column called ñPayeeò in cash

disbursement to enable posting a foreign key from

Suppliers, Employees (for payroll checks),

Creditors (for loan payments), etc. without causing

null values.

ïDisallows enforcement of referential integrity

ïMay instead combine similar entities into one entity and

then create the relationship.

» E.g. Peoplesoft Enterprise One Address Book

combines Customers, Suppliers, Employees

10-17

Combined entity key posting

10-18

Combined entity key posting

10-19

Combination of Entity Sets

without Generalization

10-20

Implementation Compromises

ÅPhysical Level Compromises

ïStorage of derivable attributes

ÅStatic derivable attribute storage is advised if it facilitates

querying; volatile derivable attribute storage should be done

only if software is capable of triggers (stored formulae rather

than stored data values for the volatile derivable attributes)

ïEvent History Roll-up

ÅA benefit of databases is the ñvirtual closeò ï that is, the

ability to produce financial statements without actually closing

the books.

ÅThe disadvantage of this is that the database can get too

large to allow efficient processing

ÅSolution: once event data is no longer needed in

disaggregated format, ñrollò it up into a single event.

10-21

Event History Roll-up

10-22

Multiple Cycle Information Needs

ÅMany information needs combine data

from multiple transaction cycles

ïCash balance

ïQuantity on Hand of Inventory Types

ïInventory total cost value

ïCost of Goods Sold

ïMany others

10-23

Query for Cash Balance

1. Determine which table contains the cash receipt date
(usually the cash receipt event table) and make sure the
same table also contains the cash receipt amount field

2. Determine which table contains the cash disbursement
date (usually the cash disbursement event table) and
make sure the same table also contains the cash
disbursement amount field

3. Create a query that establishes the ending date
constraint (with no beginning date constraint) and sums
the cash receipt dollar amount identified in step 1

4. Create a query that establishes the ending date
constraint (with no beginning date constraint) and sums
the cash disbursement dollar amount identified in step 2

5. Create a query that subtracts the total in step 4 from the
total in step 3

10-24

Query for Cash Balance

Cash Receipt (Economic Increment) Event

CashReceiptID Date Dollar Total CashAccountID
FK

 CustomerID
FK

 CashierID
FK

RA20 5/19/2010 $3,060.00 Ca123501 C2323 E111

RA21 5/24/2010 $3,050.00 Ca123501 C4731 E111

RA22 5/31/2010 $25,000.00 Ca123501 E111

Cash Disbursement (Economic Decrement) Event

DisbVoucherID VoucherDate DollarAmount CheckNbr CashAcctID
FK

 APClerkID
FK

 PayeeID
FK

39 5/15/2010 $746.57 41234 Ca123501 E36 E23

40 5/25/2010 $28,450.00 41235 Ca123501 E36 V7

41 5/29/2010 $398.12 41236 Ca123501 E36 E41

Step 1: Identify table with cash receipt date and amount fields

Step 2: Identify table with cash disbursement date and amount fields

10-25

Query for Cash Balance

Step 3: Query to sum date

constrained cash receipts Step 4: Query to sum date

constrained cash disbursements

10-26

Query for Cash Balance

Step 5: Compute Cash Balance (Step 3 ï Step 4)

Results as of

May 31, 2010

10-27

Query for Inventory Type

Quantity on Hand

1. Determine which table contains the purchase date

ï Usually in purchase event table

2. Determine which table contains the purchase quantity

and the inventory item id
ï Usually in purchase-inventory stockflow relationship table

3. Determine which table contains purchase return date

ï Usually in purchase return event table

4. Determine which table contains the quantity returned

and the inventory item id

ï Usually in purchase return-inventory stockflow relationship

table

10-28

5. Determine which table contains the sale date

ï Usually in sale event table

6. Determine which table contains the quantity sold and the

inventory item id

ï Usually in sale-inventory stockflow relationship table

7. Join the tables identified in steps 1 and 2 (with purchase

dates & quantities), group by inventory item, set the

ending date constraint (with no beginning date constraint)

and sum the quantity purchased to get the total quantity

purchased per inventory item.

ï Include the inventory item id attribute in the query result to

provide a means for linking to other intermediate results.

Query for Inventory Type

Quantity on Hand

10-29

8. Join the tables identified in steps 3 and 4 (with purchase

return dates and quantities), group by inventory item, set

the ending date constraint (with no beginning date

constraint) and sum the quantity returned to get the total

quantity returned per inventory item.

ï include the inventory item id attribute in the query result to

provide a means for linking to other intermediate results

9. Join the tables identified in steps 5 and 6 (with sale dates

and quantities), group by inventory item, set the ending

date constraint (with no beginning date constraint) and

sum the quantity sold to get the total quantity sold per

inventory item.

ï include the inventory item id attribute in the query result to

provide a means for linking to other intermediate results

Query for Inventory Type

Quantity on Hand

10-30

Query for Inventory Type

Quantity on Hand

10. Join the results from steps 7 (purchase quantities

by item id) and 8 (purchase return quantities by

item id). Change the join type to include all records

from the total quantity purchased query and the

matches from the total quantity returned query.

ï The null to zero (Nz) function is necessary in the

calculation to subtract total quantity returned from total

quantity purchased.
Å E.g. Nz(SumPurchaseQty) ï Nz(SumQtyReturned).

10-31

11. Join the results from steps 10 (unreturned purchase

quantities by item id) and 9 (quantities sold by item

id). Change the join type to include all records from

the total unreturned quantities purchased query and

the matches from the total quantity sold query.

ï Nz function is needed in the calculation to subtract total

quantity sold from total unreturned purchase quantity.
Å E.g. Nz(SumUnreturnedPurchaseQty) ï Nz(SumSaleQty)

ï This query result yields a separate total quantity on

hand for each inventory type

Query for Inventory Type

Quantity on Hand

10-32

Purchase (Economic Increment) Event

Receiving
ReportID

Date

Dollar
Amount

Receiving
ClerkID

FK

SupplierID

FK

Vendor
Invoice#

Invoice
Amount

Cash
DisbID

FK

RR18 4/30/2010 $28,450.00 E111 V7 VI4167 $28,450.00 40

RR19 5/8/2010 $1,100.00 E111 V14 821536 $1,100.00

RR21 5/10/2010 $3,240.00 E111 V14 821983 $3,240.00

RR22 5/12/2010 $2,000.00 E111 V7 VI5213 $2,000.00

RR25 5/12/2010 $480.00 E111 V90 312353 $480.00

Stockflow Relationship (Purchase ï Inventory Type)

PurchaseID ItemID PurchaseQuantity ActualUnitCost

RR18 BIS1 100 $20.00

RR18 LIS1 200 $35.50

RR18 HUS1 150 $29.00

RR18 TIS1 300 $50.00

RR19 MIN1 20 $55.00

RR21 MIN1 60 $54.00

RR22 BIS1 100 $20.00

RR25 TTP12 48 $10.00

Steps 1, 2, and 7

Constrain purchase

date, sum quantities

purchased for each

inventory type

Query for Inventory Type

Quantity on Hand

10-33

Purchase Return (Economic Increment Reversal) Event

Purchase
ReturnID

Date

Dollar
Amount

Packing
Slip#

Debit
Memo#

Receiving
ReportID

FK

SupplierID

FK

Dept
SuperID

FK

Shipping
ClerkID

FK

PR3 5/17/2010 $480.00 22 3 RR25 V90 E5 E41

Stockflow Relationship (Purchase Return ï Inventory Type)

PurchReturnID Item ID QuantityReturned ActualUnitCost

PR3 TTP12 48 $10.00

Steps 3, 4, and 8:

Constrain purchase

return date; sum

quantities returned

by inventory type

Query for Inventory Type

Quantity on Hand

10-34

Sale (Economic Decrement) Event

Sale
ID

Date Dollar
Total

PickListID PackListID BOL# SalesRepID
FK

 CustomerID
FK

 CashReceiptID
FK

12 5/5/2010 $1,100.00 15 15 15 E23 C2323 RA20

13 5/7/2010 $3,050.00 16 16 16 E26 C4731 RA21

14 5/8/2010 $2,100.00 17 17 17 E23 C2323 RA20

15 5/10/2010 $2,205.00 18 18 18 E23 C2323

Stockflow Relationship (Sale ï Inventory)

Sale ID Item ID Quantity Sold Actual Unit Price

12 LIS1 2 70.00

12 TIS1 10 96.00

13 BIS1 40 60.00

13 HUS1 13 50.00

14 MIN1 20 105.00

15 MIN1 21 105.00

Steps 5, 6, and 9:

Constrain sale date;

sum quantities sold for

each inventory type

Query for Inventory Type

Quantity on Hand

10-35

Step 10: Join Quantities purchased and returned to calculate

unreturned purchase quantities

Query for Inventory Type

Quantity on Hand

10-36

Step 11: Join net purchase quantities and quantities sold to

calculate quantity on hand

Result for

May 31, 2010

Query for Inventory Type

Quantity on Hand

10-37

ÅTo calculate inventory cost value

ï If applying an inventory costing assumption such as

weighted average unit cost, first-in-first-out (FIFO), or

last-in-first-out (LIFO)

ÅBuild on the quantity on hand queries

ÅBuild queries to determine assumed unit costs

ÅMultiply Quantity on Hand by Assumed Unit Cost

ï If applying actual costs based on specific identification

ÅNeed queries to specifically identify which inventory items

were included in each sale and assign costs accordingly

ïFIFO, LIFO, and actual costs based on specific

identification require very complex queries with

programming beyond the scope of this course

Query for Inventory Type

Cost Value

10-38

Purchase (Economic Increment) Event

Receiving
ReportID

Date

Dollar
Amount

Receiving
ClerkID

FK

SupplierID

FK

Vendor
Invoice#

Invoice
Amount

Cash
DisbID

FK

RR18 4/30/2010 $28,450.00 E111 V7 VI4167 $28,450.00 40

RR19 5/8/2010 $1,100.00 E111 V14 821536 $1,100.00

RR21 5/10/2010 $3,240.00 E111 V14 821983 $3,240.00

RR22 5/12/2010 $2,000.00 E111 V7 VI5213 $2,000.00

RR25 5/12/2010 $480.00 E111 V90 312353 $480.00

Stockflow1 Relationship (Purchase ï Inventory Type)

PurchaseID ItemID PurchaseQuantity ActualUnitCost

RR18 BIS1 100 $20.00

RR18 LIS1 200 $35.50

RR18 HUS1 150 $29.00

RR18 TIS1 300 $50.00

RR19 MIN1 20 $55.00

RR21 MIN1 60 $54.00

RR22 BIS1 100 $20.00

RR25 TTP12 48 $10.00

Query for Inventory Type

Cost Value
Query to Calculate Weighted Average Unit Cost

10-39

Query for Inventory Type

Cost Value
Query to Calculate Weighted Average Unit Cost: Constrain

purchase end date, calculate purchase line extensions

10-40

Query to Calculate Weighted Average Unit Cost: Sum

purchase quantities and purchase line extensions

Query for Inventory Type

Cost Value

10-41

Query to Calculate Weighted Average Unit Cost: Divide total purchase

line extensions by quantities to get weighted average unit costs

Query for Inventory Type

Cost Value

10-42

Query for Inventory Type

Cost Value

Multiply QOH by WAUC to get total cost value per item

10-43

Query for Inventory Type

Cost Value

Sum cost values per item to get total inventory cost value

Result for May 31, 2010

10-44

Query for Cost of Goods Sold

1. Determine which table contains the sale date

ï usually this is in the table that represents the sale event

2. Determine which table contains the sale quantities

ï usually this is in the table that represents the stockflow
relationship between sale and inventory

3. Join the tables together; set date constraints for the
beginning and ending of the income statement period;
group by inventory id, and sum the quantity sold

4. Join a weighted average unit cost query result to the
quantities sold result; multiply the quantity sold by the
weighted average unit cost

ï yields total weighted average cost separated by inventory
items

5. Create a final query that sums the weighted average cost
per inventory item sold to get the total COGS for the
income statement

10-45

Query for Cost of Goods Sold

Sale

SaleID Date DollarTotal PickListID PackListID BOL# SalesRepID CustomerID CashReceiptID

12 5/5/2010 $1,100.00 15 15 15 E23 C2323 RA20

13 5/7/2010 $3,050.00 16 16 16 E26 C4731 RA21

14 5/8/2010 $2,100.00 17 17 17 E23 C2323 RA20

15 5/10/2010 $2,205.00 18 18 18 E23 C2323

StockflowSaleInventory

SaleID ItemID QuantitySold ActualUnitSellingPrice

12 LIS1 2 $70.00

12 TIS1 10 $96.00

13 BIS1 40 $60.00

13 HUS1 13 $50.00

14 MIN1 20 $105.00

15 MIN1 21 $105.00

Steps 1, 2, 3: Constrain

sale date, group by

inventory item ID, and

sum sale quantity

10-46

Query for Cost of Goods Sold

Step 4: Multiply quantities sold by weighted average unit

costs to get cost of goods sold per item

10-47

Query for Cost of Goods Sold

Step 5: Sum cost of goods sold per item to get total cost of goods sold

Result for

May 1-31, 2010

